Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Glass Debris in Rollover Accidents

2008-04-14
2008-01-0167
Vehicles involved in rollover accidents almost always leave a debris trail. This debris trail is useful for the accident reconstructionist; it assists with identifying the vehicle path during the rollover and the location and orientation of the vehicle at various vehicle to ground contacts. Often it is helpful to know when and where various vehicle windows fractured. This is possible by comparing glass obtained from the accident site with glass samples still attached to the accident vehicle. The limit of this analysis is controlled by the manufacturing tolerance of the vehicle glass and the specified pane thickness. This paper presents a series of measurements made on various automotive tempered windows and presents: 1) the thickness range in individual panes, and 2) the thickness variation seen from pane to pane in the same vehicle.
Journal Article

Rollover Crash Tests on Dirt: An Examination of Rollover Dynamics

2008-04-14
2008-01-0156
Most rollover literature is statistical in nature, focuses on reconstructed field data and experiences, or utilizes a very broad pool of dissimilar test data. When test data is presented, nearly all of it involves hard surface rollover tests performed at speeds near 30 mph, with a mix of passenger cars, sport utility vehicles and minivans. Five full-scale dolly rollover tests on dirt of production sport utility vehicles (SUV) and multi-purpose vehicles (MPV) were performed with similar input parameters. The similarities included Federal Motor Vehicle Safety Standard (FMVSS) 208 rollover dolly initiated events, level dirt rollover surfaces, and initiation speeds over 40 mph. All tests were recorded with multiple high-speed and real-time cameras. Additionally, some of the tests included detailed documentation of the rollover surface and the resulting evidence and debris patterns, as well as onboard angular rate sensing instrumentation.
Journal Article

Fire Occurrence in Frontal Crashes Based on NASS/CDS

2008-04-14
2008-01-0256
The basis for this analysis was FARS 1979 to 2005 and NASS/CDS 1997 to 2004. For these years, there were 12,493 cases in FARS where fire was coded as the most harmful event. In NASS there were 227 cases with major fires, 87 of which were in frontal crashes. The paper shows the annual trends in FARS with regard to overall fatalities and fatalities with fire as the most harmful event by direction of principal vehicle damage. The NASS/CDS files are used to determine the location of fire origin. The FARS data show that crashes with frontal damage are the most frequent crash types where fire is the most harmful event. In general, the most harmful event fire rates have declined with the overall fatality rates in FARS. However, in recent years the trend in fires with frontal damage has been on the increase. Cases in NASS were examined to identify patterns for major fires in frontal crashes. Engine compartment fires were by far the most frequent.
Journal Article

A Frontal Impact Taxonomy for USA Field Data

2008-04-14
2008-01-0526
An eight-group taxonomy was created to classify real-world frontal crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the taxonomy: (1) frontal-impact towaway crashes were identified by examining 1985-2005 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1995-2005 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eight-group taxonomy; and (3) two subsets of the NASS dataset were analyzed to assess the consistency of the resulting taxonomic-group frequencies. “Full-engagement” and “Offset” crashes were the most frequent crash types, each contributing approximately 33% to the total. The group identified as “D, Y, Z No-Rail” was the most over-represented crash type for vehicles with at least one seriously-injured occupant.
Journal Article

The Hybrid III Dummy Family Subject to Loading by a Motorized Shoulder Belt Tensioner

2008-04-14
2008-01-0516
Motorized shoulder belt tensioning is a new automotive seatbelt technology which has shown promise to reduce automotive crash injuries. The current study was conducted to determine if the Hybrid III family of dummies is an appropriate biofidelic surrogate for studying motorized shoulder belt tensioning. The objective was to measure torso retraction time, torso position, torso velocity, internal resistive moment, changes in torso curvature and the center of rotation of torso extension during seatbelt tensioning for the Hybrid III family. A previous study developed a protocol and test fixture to measure the biomechanics of volunteers subject to quasi-static loading by a motorized shoulder belt tensioner. A fixture supported the occupant leaning forward and applied shoulder belt tension. Kinematics were quantified by analyzing the motion of reflective markers on the dummy using an eight camera digital video system. A three axis load cell measured internal resistance to extension.
Journal Article

Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy

2008-04-14
2008-01-1120
This research focuses on comparing the biomechanical response of the head and neck of the Hybrid III 3-year-old anthropometric test device finite element model and pediatric cadaver data, under flexion-extension bending and axial tensile loading conditions. Previous experimental research characterized the quasi-static biomechanical response of the pediatric cervical spine under flexion-extension bending and tolerance in tensile distraction loading conditions. Significant differences in rotational and linear stiffness were found between the Hybrid III model and the pediatric cadaver data. In this research the biomechanical child cadaver neck response has been implemented into the 3-year-old Hybrid III child dummy FE model. An explicit finite element code (LS-DYNA) and the modified Hybrid III model were used to numerically simulate the previous cadaver tests and validate the altered Hybrid III neck.
Journal Article

Finite Element Modeling of Rollover Crash Tests with Hybrid III Dummies

2008-04-14
2008-01-1123
The objective of this study was to demonstrate the ability to reproduce the impact environment occurring in rollover crash tests. There are over 26,000 fatalities and serious injuries annually occurring in rollover accidents in the United States [1]. Many of these are to restrained occupants and their head and spinal injuries have been associated with contact with the roof structure. Finite element models of the Hybrid III dummy and vehicles were used to model the rollover crash tests conducted for Ford. The rollover crash tests involved a production vehicle in a baseline form and one with a roll cage added to it. The impact conditions were incorporated and the results compared with the published test results. The results show that finite element modeling can reproduce the results from rollover crash tests.
Journal Article

Relationship between Frontal Stiffness and Occupant Compartment Intrusion in Frontal Crash Tests

2008-04-14
2008-01-0815
In the United States, there are two leading frontal crash consumer information rating systems for light vehicles. The first is the National Highway Traffic Safety Administration's New Car Assessment Program (NCAP). The second rating system comes from the Insurance Institute for Highway Safety (NHS). For vehicle manufacturers, performing well in these rating systems has become an integral part of their safety program and the design of their vehicles. However, there has been much debate on the impact of these rating systems on vehicle design characteristics, specifically, their effects on frontal stiffness to improve these ratings. Increased frontal stiffness in light trucks and vans (LTVs) has been shown to increase LTV aggressivity in LTV-car crashes, which is a concern. This paper focuses on how frontal stiffness relates to occupant compartment intrusion by vehicle type.
Journal Article

Jaw Loading Response of Current ATDs

2009-04-20
2009-01-0388
Biomechanical surrogates are used in various forms to study head impact response in automotive applications and for assessing helmet performance. Surrogate headforms include those from the National Operating Committee on Standards for Athletic Equipment (NOCSAE) and the many variants of the Hybrid III. However, the response of these surrogates to loading at the chin and how that response may affect the loads transferred from the jaw to the rest of the head are unknown. To address part of that question, the current study compares the chin impact response performance of select human surrogates to that of the cadaver. A selection of Hybrid III and NOCSAE based surrogates with fixed and articulating jaws were tested under drop mass impact conditions that were used to describe post mortem human subject (PMHS) response to impacts at the chin (Craig et al., 2008). Results were compared to the PMHS response with cumulative variance technique (Rhule et al., 2002).
Journal Article

Vehicle and Occupant Responses in a Friction Trip Rollover Test

2009-04-20
2009-01-0830
Objective: A friction rollover test was conducted as part of a rollover sensing project. This study evaluates vehicle and occupant responses in the test. Methods: A flat dolly carried a Saab 9-3 sedan laterally, passenger-side leading to a release point at 42 km/h (26 mph) onto a high-friction surface. The vehicle was equipped with roll, pitch and yaw gyros near the center of gravity. Accelerometers were placed at the vehicle center tunnel, A-pillar near the roof, B-pillar near the sill, suspension sub-frame and wheels. Five off-board and two on-board cameras recorded kinematics. Hybrid III dummies were instrumented for head and chest acceleration and upper neck force and moment. Belt loads were measured. Results: The vehicle release caused the tires and then wheel rims to skid on the high-friction surface. The trip involved roll angular velocities >300 deg/s at 0.5 s and a far-side impact on the driver’s side roof at 0.94 s. The driver was inverted in the far-side, ground impact.
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Journal Article

Vehicle Road Runoff and Return - Effect of Limited Steering Intervention

2011-04-12
2011-01-0583
Vehicle safety remains a significant concern for consumers, government agencies, and automotive manufacturers. One critical type of vehicle accident results from the right or left side tires leaving the road surface and then returning abruptly due to large steering wheel inputs (road runoff and return). A subset of runoff road crashes that involve a steep hard shoulder has been labeled shoulder induced accidents. In this paper, a limited authority real time steering controller has been developed to mitigate shoulder induced accidents. A Kalman Filter based tire cornering stiffness estimation technique has been coupled with a feedback controller and driver intention module to create a safer driving solution without excessive intervention. In numerical studies, lateral vehicle motion improvements of 30% were realized for steering intervention. Specifically, the vehicle crossed the centerline after 1.0 second in the baseline case versus 1.3 seconds with steering assistance at 60 kph.
Journal Article

Development of a Camera-Based Forward Collision Alert System

2011-04-12
2011-01-0579
Forward Collision Alert (or Forward Collision Warning) systems provide alerts intended to assist drivers in avoiding or mitigating the harm caused by rear-end crashes. These systems currently use front-grille mounted, forward-looking radar devices as the primary sensor. In contrast, Lane Departure Warning (LDW) systems employ forward-looking cameras mounted behind the windshield to monitor lane markings ahead and warn drivers of unintended lane violations. The increasing imaging sensor resolution and processing capability of forward-looking cameras, as well recent important advances in machine vision algorithms, have pushed the state-of-the-art for camera-based features. Consequently, camera-based systems are emerging as a key crash avoidance system component in both a primary and supporting sensing role. There are currently no production vehicles with cameras used as the sole FCA sensing device.
Journal Article

Balance of Static and Dynamic Rollover Thresholds for a Three-Axle Vehicle

2011-09-13
2011-01-2152
In this study, a three-axle vehicle model established with ADAMS/Car is first correlated with field test data from quasi-static tilt table and highly dynamic NATO double lane change maneuver tests, respectively. It is then applied to predict the vehicle static rollover threshold (SRT) and dynamic rollover threshold (DRT). With the optimization approach proposed in this study it is possible to efficiently tune the anti-roll bar stiffness at each axle, to either maximize SRT or DRT, or balance both. The sensitivity results derived from the optimization iteration process can be applied to effectively size the three anti-roll bars that balance the static and dynamic roll stability performances. The proposed method can be potentially applied to include other parameters to address the roll stability issues and beyond.
Journal Article

Study on Characteristics of Event Data Recorders in Japan; Analysis of J-NCAP and Thirteen Crash Tests

2011-04-12
2011-01-0810
Event Data Recorder (EDR) is a device to record vehicle and occupant information for a brief period of time before, during and after a crash event. EDR is one of the promising devices for accident reconstruction by recording important information e.g. vehicle speed, engine speed, brake switch, throttle and delta-V. However, in order to use EDR for an accident investigation, reliability and accuracy of those EDR data must be examined firstly. The aim of this study is to evaluate the characteristics of EDR and to understand the performance of EDR for the improvement of accident reconstruction with more reliable and accurate information on an accident in Japan. The analysis is based on J-NCAP crash tests from 2006 to 2009 with corresponding EDR datasets. Full-overlap frontal collision test and offset frontal collision test of fourteen car models were analyzed.
Journal Article

Effect of Loading Rate Dependence on Unstable Behavior of Thin-Shell Structured Beams under Axial Compression- Elucidation of Mechanism and Effect of Beam Aspect Ratio on Loading Rate Dependence

2012-04-16
2012-01-0554
The thin-shell structured beams that are used extensively in the vehicle body need to satisfy both strength requirements for crash safety and demands for weight reductions for environmental friendliness. This study focused on the loading rate dependence of reaction force, especially the maximum value, which is generated in thin-shell structured beams as a result of axial force inputs in a frontal crash. The mechanism generating the reaction force was made clear through a comparison with classical Euler buckling(1) and von Karman's effective width expression(2). It was observed that a square cross section displays markedly large loading rate dependence, which can be approximated well by considering the effect of inertial force in the high loading rate region and by von Karman's effective width solution in the low loading rate region. Essentially, this dependence is governed by Euler buckling.
Journal Article

Moving Deformable Barrier Test Procedure for Evaluating Small Overlap/Oblique Crashes

2012-04-16
2012-01-0577
In September 2009 the National Highway Traffic Safety Administration (NHTSA) published a report that investigated the incidence of fatalities to belted non-ejected occupants in frontal crashes involving late-model vehicles. The report concluded that after exceedingly severe crashes, the largest number of fatalities occurred in crashes involving poor structural engagement between the vehicle and its collision partner, present in crashes characterized as corner impacts, oblique crashes, impacts with narrow objects, and heavy vehicle underrides. By contrast, few if any of these 122 fatal crashes were full-frontal or offset-frontal impacts with good structural engagement, excepting crashes that were of extreme severity or the occupants that were exceptionally vulnerable. The intent of this research program is to develop a test protocol that replicates real-world injury potential in small overlap impacts (SOI) and oblique offset impacts (Oblique) in motor vehicle crashes.
Journal Article

An Investigation of Injury Factors Concerning Drivers in Vehicles Involved in Small-Overlap Frontal Crashes

2012-04-16
2012-01-0599
The causes of injuries suffered by drivers in “small-overlap frontal crashes” (SOFC) were examined. These crashes were defined as ones in which vehicles are loaded outside their longitudinal side members. SOFC accident data sets stored in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database were investigated. Percentages of cases sustaining injury to each body region of drivers were calculated, and the differences between the percentages of injury by body region were examined. To investigate the injury mechanisms, SOFC tests with two types of rigid barrier were then conducted. Injury values in each body region were analyzed to validate the reproducibility of SOFC test as a relevant test.
Journal Article

Optimized AHSS Structures for Vehicle Side Impact

2012-04-16
2012-01-0044
Advanced high strength steels (AHSS) have been widely accepted as a material of choice in the automotive industry to balance overall vehicle weight and stringent vehicle crash test performance targets. Combined with efficient use of geometry and load paths through shape and topology optimization, AHSS has enabled vehicle manufacturers to obtain the highest possible ratings in safety evaluations by the Insurance Institute for Highway Safety (IIHS) and the National Highway Traffic Safety Administration (NHTSA). In this study, vehicle CAE side impact models were used to evaluate three side impact crash test conditions (IIHS side impact, NHTSA LINCAP and FMVSS 214 side pole) and the IIHS roof strength test condition and to identify several key components affecting the side impact test performance. HyperStudy® optimization software and LS-DYNA® nonlinear finite element software were utilized for shape and gauge optimization.
Journal Article

Side Crash Pressure Sensor Prediction: An Improved Corpuscular Particle Method

2012-04-16
2012-01-0043
In an attempt to predict the responses of side crash pressure sensors, the Corpuscular Particle Method (CPM) was adopted and enhanced in this research. Acceleration-based crash sensors have traditionally been used extensively in automotive industry to determine the air bag firing time in the event of a vehicle accident. The prediction of crash pulses obtained from the acceleration-based crash sensors by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crash zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side impact applications.
X